New era of structural glazing production

Date: 14 September 2022
Copyright:
  • Kalle Kaijanen | Glaston
New era of structural glazing production
Photo source
Glaston Corporation

Date: 14 September 2022

This Glastory blog by Kalle Kaijanen is dealing with the processing of high-strength / structural laminates.

Laminated glass is one of the fastest growing product areas in the glass industry today. The primary reason for the growth is the increasing demand for safety. More and more regulations require safer products, and the number of applications mandating safety glass is booming, too. At the same time, architects are looking to maximize the transparency of their buildings while making their designs unique.

Greater demand for high-strength laminates

One of the products increasingly required by the market is high-strength / structural laminate. Originally this demand has started from special applications, such as structural laminates (that can replace load-bearing structures such as pillars in buildings, perhaps the most famous example being the Apple Store in New York) and hurricane resistant glazing. But with ever increasing safety demands for products, high strength laminates are rapidly making their way to traditional applications such as railings, as well.

While these type of laminates offer often superior performance for the application, they also are more complex to process. This leads to a situation where glass processors are facing a demand to produce these products in increasing quantities, while struggling with yield and capacity. When this is combined with the fact that structural interlayers are typically more expensive than traditional ones, being able to ensure high yield is of utmost importance.

Narrow operating window resulting in air bubbles

A narrow operating window (range of optimal process temperature) is the main reason for these difficulties. In general, the more complex the laminate is in terms of size, shape, glass type or laminate composition, the narrower the range of optimal temperature is for the process. As a result, quality can be impaired.

One of the most common quality issue seen in the laminating process is bubbles at the trailing end of the laminate. In practice what the bubbles mean is that there is too much air left inside the laminate. While there can be multiple reasons that are causing this, with high-strength laminates the reason is often overheating of the edge areas of the laminate. The same phenomenon happens regardless of the heating type used, and it happens on every edge of the laminate (leading, left, right and trailing). The issue is predominantly seen on the trailing edge as that’s where most of the air gets pushed during pressing.

New era of structural glazing production

New convection technology cracks the challenge

The good news is that an efficient solution for the issue has been found. Our patented Convection Control technology has been developed specifically to increase production capability with structural and high-strength laminates.

Until now, glass processors have had to be very precise to achieve good quality with complex laminates while struggling with yield. With the new convection control system, processing these products becomes more like working with standard laminates. In practice this means that glass processors will be able to reach higher capacity and yield with complex laminates.

More about the technology: #Ask Glaston lamination series Episode 3

600450 New era of structural glazing production glassonweb.com

Others also read

Adhesion tests conducted on laminated glass include pure shear and tensile loading tests.
The purpose of this work is to implement an algorithm to perform topology optimization for glass structures fabricated by the AWJ cutting method.
The objective of the present work is the development and testing of a robust numerical model that can naturally introduce the generated crack pattern into virtual specimens and manage the interaction among many fragments.
The latest Glastory blog explores the evolving role of automation in glass processing, highlighting examples of how it is transforming efficiency in the industry.
This paper focuses on a numerical investigation of the in-plane behavior of an innovative steel-reinforced glass frame prototype, designed to incorporate (partially) UV-curable beam-column connections.
What glass processes gain the most from automation? In this blog, we’ll focus on some of the particularly promising application areas.

FROM INDUSTRY

Via per Monastier, 4
31056 Vallio di Roncade TV
Italy

Ottergemsesteenweg 707-Zuid
9000 Ghent
Belgium

52 Corniche El-Nil, AL-SHARIFAIN Tower 10th Floor,
Maadi,
Cairo Governorate
11728
Egypt

Room 201 - 401 , Building B1, Hengli Industrial Park, no. 168, Weikeng Road, Tongde Community, Baolong Street
Longgang Qu
Shenzhen Shi
Guangdong Sheng, 518115
China

Pol. Ind. Penapurreira Parcela C4-B,
15320 As Pontes de García Rodríguez A Coruña
Spain

2200 W. Salzburg Rd.
Auburn , MI 48611
United States

İçmeler Mah. D-100 Karayolu Cad. No:44A,
34947 Tuzla,/İstanbul
Turkey

ARTICLES RELATED PRODUCTS

Qingdao AEON Glass Co., Ltd.
Glas Trösch Holding AG
Hornos Industriales Pujol
Wenfrod Glass Processing Co. (Tempered Glass Factory Turkey)
Wenfrod Glass Processing Co. (Tempered Glass Factory Turkey)

Add new comment