Date: 26 September 2012
But scientists who look at the structure of glass strictly by the numbers believe some of the latest methods from the microelectronics and nanotechnology industry could produce glass that’s about twice as strong as the best available today.
Rice University chemist Peter Wolynes is one of them. Wolynes and Rice graduate student Apiwat Wisitsorasak determined in a new study that a process called chemical vapor deposition, which is used industrially to make thin films, could yield a glass that withstands tremendous stress without breaking.
Wolynes, a senior scientist with the Center for Theoretical Biological Physics at Rice’s BioScience Research Collaborative, and Wisitsorasak reported their results this week in the Proceedings of the National Academy of Sciences. Their calculations were based on a modified version of a groundbreaking mathematical model that Wolynes first created to answer a decades-old conundrum about how glass forms. With the modifications, Wolynes’ theory can now predict the ultimate strength of any glass, including the common varieties made from silica and more exotic types made of polymers and metals.
Read more>>
Add new comment